Sunday, November 28, 2010

Nobelium


Nobelium
From Wikipedia, the free encyclopedia
Question book-new.svg
This article needs additional citations for verification.
Please help improve this article by adding reliable references. Unsourced material may be challenged and removed. (September 2010)

mendelevium  nobelium  lawrencium
Yb

No

(Upb)
Element 1: Hydrogen (H), Other non-metal
Element 2: Helium (He), Noble gas
Element 3: Lithium (Li), Alkali metal
Element 4: Beryllium (Be), Alkaline earth metal
Element 5: Boron (B), Metalloid
Element 6: Carbon (C), Other non-metal
Element 7: Nitrogen (N), Other non-metal
Element 8: Oxygen (O), Other non-metal
Element 9: Fluorine (F), Halogen
Element 10: Neon (Ne), Noble gas
Element 11: Sodium (Na), Alkali metal
Element 12: Magnesium (Mg), Alkaline earth metal
Element 13: Aluminium (Al), Other metal
Element 14: Silicon (Si), Metalloid
Element 15: Phosphorus (P), Other non-metal
Element 16: Sulfur (S), Other non-metal
Element 17: Chlorine (Cl), Halogen
Element 18: Argon (Ar), Noble gas
Element 19: Potassium (K), Alkali metal
Element 20: Calcium (Ca), Alkaline earth metal
Element 21: Scandium (Sc), Transition metal
Element 22: Titanium (Ti), Transition metal
Element 23: Vanadium (V), Transition metal
Element 24: Chromium (Cr), Transition metal
Element 25: Manganese (Mn), Transition metal
Element 26: Iron (Fe), Transition metal
Element 27: Cobalt (Co), Transition metal
Element 28: Nickel (Ni), Transition metal
Element 29: Copper (Cu), Transition metal
Element 30: Zinc (Zn), Transition metal
Element 31: Gallium (Ga), Other metal
Element 32: Germanium (Ge), Metalloid
Element 33: Arsenic (As), Metalloid
Element 34: Selenium (Se), Other non-metal
Element 35: Bromine (Br), Halogen
Element 36: Krypton (Kr), Noble gas
Element 37: Rubidium (Rb), Alkali metal
Element 38: Strontium (Sr), Alkaline earth metal
Element 39: Yttrium (Y), Transition metal
Element 40: Zirconium (Zr), Transition metal
Element 41: Niobium (Nb), Transition metal
Element 42: Molybdenum (Mo), Transition metal
Element 43: Technetium (Tc), Transition metal
Element 44: Ruthenium (Ru), Transition metal
Element 45: Rhodium (Rh), Transition metal
Element 46: Palladium (Pd), Transition metal
Element 47: Silver (Ag), Transition metal
Element 48: Cadmium (Cd), Transition metal
Element 49: Indium (In), Other metal
Element 50: Tin (Sn), Other metal
Element 51: Antimony (Sb), Metalloid
Element 52: Tellurium (Te), Metalloid
Element 53: Iodine (I), Halogen
Element 54: Xenon (Xe), Noble gas
Element 55: Caesium (Cs), Alkali metal
Element 56: Barium (Ba), Alkaline earth metal
Element 57: Lanthanum (La), Lanthanoid
Element 58: Cerium (Ce), Lanthanoid
Element 59: Praseodymium (Pr), Lanthanoid
Element 60: Neodymium (Nd), Lanthanoid
Element 61: Promethium (Pm), Lanthanoid
Element 62: Samarium (Sm), Lanthanoid
Element 63: Europium (Eu), Lanthanoid
Element 64: Gadolinium (Gd), Lanthanoid
Element 65: Terbium (Tb), Lanthanoid
Element 66: Dysprosium (Dy), Lanthanoid
Element 67: Holmium (Ho), Lanthanoid
Element 68: Erbium (Er), Lanthanoid
Element 69: Thulium (Tm), Lanthanoid
Element 70: Ytterbium (Yb), Lanthanoid
Element 71: Lutetium (Lu), Lanthanoid
Element 72: Hafnium (Hf), Transition metal
Element 73: Tantalum (Ta), Transition metal
Element 74: Tungsten (W), Transition metal
Element 75: Rhenium (Re), Transition metal
Element 76: Osmium (Os), Transition metal
Element 77: Iridium (Ir), Transition metal
Element 78: Platinum (Pt), Transition metal
Element 79: Gold (Au), Transition metal
Element 80: Mercury (Hg), Transition metal
Element 81: Thallium (Tl), Other metal
Element 82: Lead (Pb), Other metal
Element 83: Bismuth (Bi), Other metal
Element 84: Polonium (Po), Other metal
Element 85: Astatine (At), Halogen
Element 86: Radon (Rn), Noble gas
Element 87: Francium (Fr), Alkali metal
Element 88: Radium (Ra), Alkaline earth metal
Element 89: Actinium (Ac), Actinoid
Element 90: Thorium (Th), Actinoid
Element 91: Protactinium (Pa), Actinoid
Element 92: Uranium (U), Actinoid
Element 93: Neptunium (Np), Actinoid
Element 94: Plutonium (Pu), Actinoid
Element 95: Americium (Am), Actinoid
Element 96: Curium (Cm), Actinoid
Element 97: Berkelium (Bk), Actinoid
Element 98: Californium (Cf), Actinoid
Element 99: Einsteinium (Es), Actinoid
Element 100: Fermium (Fm), Actinoid
Element 101: Mendelevium (Md), Actinoid
Element 102: Nobelium (No), Actinoid
Element 103: Lawrencium (Lr), Actinoid
Element 104: Rutherfordium (Rf), Transition metal
Element 105: Dubnium (Db), Transition metal
Element 106: Seaborgium (Sg), Transition metal
Element 107: Bohrium (Bh), Transition metal
Element 108: Hassium (Hs), Transition metal
Element 109: Meitnerium (Mt), Transition metal
Element 110: Darmstadtium (Ds), Transition metal
Element 111: Roentgenium (Rg), Transition metal
Element 112: Copernicium (Cn), Transition metal
Element 113: Ununtrium (Uut)
Element 114: Ununquadium (Uuq)
Element 115: Ununpentium (Uup)
Element 116: Ununhexium (Uuh)
Element 117: Ununseptium (Uus)
Element 118: Ununoctium (Uuo)
http://upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Electron_shell_102_Nobelium.svg/42px-Electron_shell_102_Nobelium.svg.png
102No
Appearance
unknown, probably metallic
General properties
nobelium, No, 102
n/a7, f
[Rn] 5f14 7s2
2, 8, 18, 32, 32, 8, 2 (Image)
Physical properties
Atomic properties
2, 3
1st: 641.6 kJ·mol−1
2nd: 1254.3 kJ·mol−1
3rd: 2605.1 kJ·mol−1
Miscellanea
10028-14-5
Most stable isotopes
Main article: Isotopes of nobelium
DE (MeV)
262No
5 ms
260No
106 ms
SF
259No
58m
75% α
7.69,7.61,7.53....
255Fm
25% ε
259Md
258No
1.2 ms
SF
257No
25 s
α
8.32,8.22
253Fm
256No
2.91 s
99.5% α
8.45,8.40
252Fm
0.5% f
255No
3.1 m
61% α
8.12,8.08,7.93
251Fm
39% ε
2.012
255Md
254Nom2
198 µs
γ
254Nom1
254Nom1
275 ms
γ
250Nog
254Nog
51 s
253Nom
43.5 µs
γ
253Nog
253No
1.62 m
α
8.14,8.06,8.04,8.01
249Fm
252Nom
110 ms
252Nog
2.44 s
75% α
8.42,8.37
248Fm
25% SF
251No
0.76 s
α
8.62,8.58
247Fm
250Nom
43 µs
SF
250Nog
3.7 µs
SF
v  d  e

http://upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Gnome-mime-audio-openclipart.svg/50px-Gnome-mime-audio-openclipart.svg.png
Play sound
Common English pronunciation of nobelium

Problems listening to this file? See media help.
Nobelium (play /nˈbɛliəm/ noh-BEL-ee-əm or /nˈbliəm/ noh-BEE-lee-əm) is a synthetic element with the symbol No and atomic number 102. It was first correctly identified in 1966 by scientists at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia. Little is known about the element but limited chemical experiments have shown that it forms a stable divalent ion in solution as well as the predicted trivalent ion that is associated with its presence as one of the actinoids.
Contents
 [hide]
·         1 Discovery profile
·         2 Naming
·         3 Physical properties
·         4 Experimental chemistry
·         5 Isotopes
·         6 References
·         7 Notes
·         8 External links
[edit]Discovery profile
The discovery of element 102 was first announced by physicists at the Nobel Institute in Sweden in 1957. The team reported that they created an isotope with a half-life of 10 minutes, decaying by emission of an 8.5 MeV alpha particle, after bombarding 244Cm with 13C nuclei. The activity was assigned to251102 or 253102. The scientists proposed the name nobelium (No) for the new element. Later they retracted their claim and associated the activity to background effects.
The synthesis of element 102 was then claimed in April 1958 at the University of California, Berkeley by Albert Ghiorso, Glenn T. Seaborg, John R. Walton and Torbjørn Sikkeland. The team used the new heavy-ion linear accelerator (HILAC) to bombard a curium target (95% 244Cm and 5% 246Cm) with 13C and12C ions. They were unable to confirm the 8.5 MeV activity claimed by the Swedes but were instead able to detect decays from 250Fm, supposedly the daughter of 254102, which had an apparent half-life of ~3 s. In 1959 the team continued their studies and claimed that they were able to produce an isotope that decayed predominantly by emission of an 8.3 MeV alpha particle, with a half-life of 3 s with an associated 30% spontaneous fission branch. The activity was initially assigned to 254No but later changed to 252No. The Berkeley team decided to adopt the name nobelium for the element.
24496Cm + 126C  256102No*  252102No + 4 10n
Further work in 1961 on the attempted synthesis of element 103 (see lawrencium) produced evidence for a Z=102 alpha activity decaying by emission of an 8.2 MeV particle with a half-life of 15 s, and assigned to 255No.
Following initial work between 1958–1964, in 1966, a team at the Flerov Laboratory of Nuclear Reactions (FLNR) reported that they had been able to detect250Fm from the decay of a parent nucleus (254No) with a half-life of ~50s, in contradiction to the Berkeley claim. Furthermore, they were able to show that the parent decayed by emission of 8.1 MeV alpha particles with a half-life of ~35 s.
23892U + 2210Ne  260102No*  254102No + 6 10n
In 1969, the Dubna team carried out chemical experiments on element 102 and concluded that it behaved as the heavier homologue of Ytterbium. The Russian scientists proposed the name joliotium (Jo) for the new element.
Later work in 1967 at Berkeley and 1971 at Oak Ridge fully confirmed the discovery of element 102 and clarified earlier observations.
In 1992, the IUPAC-IUPAP Transfermium Working Group (TWG) assessed the claims of discovery and concluded that only the Dubna work from 1966 correctly detected and assigned decays to Z=102 nuclei at the time. The Dubna team are therefore officially recognised as the discoverers of nobelium although it is possible that it was detected at Berkeley in 1959.
[edit]Naming
Element 102 was first named nobelium (No) by its claimed discoverers in 1957 by scientists at the Nobel Institute in Sweden. The name was later adopted by Berkeley scientists who claimed its discovery in 1959.
The International Union of Pure and Applied Chemistry (IUPAC) officially recognised the name nobelium following the Berkeley results[when?].
In 1994, and subsequently in 1997, the IUPAC ratified the name nobelium (No) for the element on the basis that it had become entrenched in the literature over the course of 30 years and that Alfred Nobel should be commemorated in this fashion.[citation needed]
[edit]Physical properties
The appearance of this element is unknown, however it is most likely silvery-white or gray and metallic. If sufficient amounts of nobelium were produced, it would pose a radiation hazard. Some sources quote a melting point of 827°C for nobelium but this cannot be substantiated from an official source and seems implausible regarding the requirements of such a measurement. However, the 1st, 2nd and 3rd ionization energies have been measured[citation needed]. In addition, an electronegativity value of 1.3 is also sometimes quoted. This is most definitely only an estimate since a true value can only be determined using a chemical compound of the element and no such compounds exist for nobelium.
[edit]Experimental chemistry
[edit]Aqueous phase chemistry
First experiments involving nobelium assumed that it predominantly formed a +III state like earlier actinoids. However, it was later found that nobelium forms a stable +II state in solution, although it can be oxidised to an oxidising +III state.[1] A reduction potential of −1.78 V has been measured for the No3+ ion. The hexaaquanobelium(II) ion has been determined to have an ionic radius of 110 pm.
[edit]Summary of compounds and (complex) ions
Formula
Names(s)
[No(H2O)6]3+
hexaaquanobelium(III)
[No(H2O)6]2+
hexaaquanobelium(II)
[edit]Isotopes
Main article: Isotopes of nobelium
Seventeen radioisotopes of nobelium have been characterized, with the most stable being 259No with a half-life of 58 minutes. Longer half-lives are expected for the as-yet-unknown 261No and 263No. An isomeric level has been found in 253No and K-isomers have been found in 250No, 252No and 254No to date.
[edit]Synthesis of isotopes as decay products
Isotopes of nobelium have also been identified in the decay of heavier elements. Observations to date are summarised in the table below:
Evaporation Residue
Observed No isotope
262Lr
262No
269Hs, 265Sg, 261Rf
257No
267Hs, 263Sg, 259Rf
255No
254Lr
254No
261Sg, 257Rf
253No
264Hs, 260Sg, 256Rf
252No
255Rf
251No
[edit]Chronology of isotope discovery
Isotope
Year discovered
Discovery reaction
250Nom
2001
204Pb(48Ca,2n)
250Nog
2006
204Pb(48Ca,2n)
251No
1967
244Cm(12C,5n)
252Nog
1959
244Cm(12C,4n)
252Nom
~2002
206Pb(48Ca,2n)
253Nog
1967
242Pu(16O,5n),239Pu(18O,4n)
253Nom
1971
249Cf(12C,4n)[2]
254Nog
1966
243Am(15N,4n)
254Nom1
1967?
246Cm(13C,5n),246Cm(12C,4n)
254Nom2
~2003
208Pb(48Ca,2n)
255No
1967
246Cm(13C,4n),248Cm(12C,5n)
256No
1967
248Cm(12C,4n),248Cm(13C,5n)
257No
1961? , 1967
248Cm(13C,4n)
258No
1967
248Cm(13C,3n)
259No
1973
248Cm(18O,α3n)
260No
 ?
254Es + 22Ne,18O,13C - transfer
261No
unknown
262No
1988
254Es + 22Ne - transfer (EC of 262Lr)
[edit]Isomerism in nobelium nuclides
254No The study of K-isomerism was recently studied by physicists at the University of Jyväskylä physics laboratory (JYFL). They were able to confirm a previously reported K-isomer and detected a second K-isomer. They assigned spins and parities of 8- and 16+ to the two K-isomers.
253No In 1971, Bemis et al. was able to determine an isomeric level decaying with a half-life of 31 µs from the decay of 257Rf. This was confirmed in 2003 at the GSI by also studying the decay of 257Rf. Further support in the same year from the FLNR appeared with a slightly higher half-life of 43.5 µs, decaying by M2 gamma emission to the ground state.
252No In a recent study by the GSI into K-isomerism in even-even isotopes, a K-isomer with a half-life of 110 ms was detected for 252No. A spin and parity of 8- was assigned to the isomer.
250No In 2003, scientists at the FLNR reported that they had been able to synthesise 249No which decayed by SF with a half-life of 54µs. Further work in 2006 by scientists at the ANL showed that the activity was actually due to a K-isomer in 250No. The ground state isomer was also detected with a very short half-life of 3.7µs.
[edit]Chemical yields of isotopes
[edit]Cold fusion
The table below provides cross-sections and excitation energies for cold fusion reactions producing nobelium isotopes directly. Data in bold represents maxima derived from excitation function measurements. + represents an observed exit channel.
Projectile
Target
CN
1n
2n
3n
4n
48Ca
208Pb
256No
254No: 2050 nb ; 22.3 MeV
48Ca
207Pb
255No
253No: 1310 nb ; 22.4 MeV
48Ca
206Pb
254No
253No: 58 nb ; 23.6 MeV
252No: 515 nb ; 23.3 MeV
251No: 30 nb ; 30.7 MeV
250No: 260 pb ; 43.9 MeV
48Ca
204Pb
252No
250No:13.2 nb ; 23.2 MeV
[edit]Hot fusion
The table below provides cross-sections and excitation energies for hot fusion reactions producing nobelium isotopes directly. Data in bold represents maxima derived from excitation function measurements. + represents an observed exit channel.
Projectile
Target
CN
3n
4n
5n
6n
26Mg
232Th
258No
254No:1.6 nb
253No:9 nb
252No:8 nb
22Ne
238U
260No
256No:40 nb
255No:200 nb
254No:15 nb
22Ne
236U
258No
254No:7 nb
253No:25 nb
252No:15 nb
[edit]Retracted isotopes
In 2003, scientists at the FLNR claimed to have discovered the lightest known isotope of nobelium. However, subsequent work showed that the 54 µs activity was actually due to 250No and the isotope 249No was retracted.
[edit]References
1.     ^ Toyoshima, A.; Kasamatsu, Y.; Tsukada, K.; Asai, M.; Kitatsuji, Y.; Ishii, Y.; Toume, H.; Nishinaka, I. et al. (Jul 2009). "Oxidation of Element 102, Nobelium, with Flow Electrolytic Column Chromatography on an Atom-at-a-Time Scale". Journal of the American Chemical Society 131 (26): 090610145759060. doi:10.1021/ja9030038ISSN 0002-7863PMID 19514720edit
2.     ^ see rutherfordium
[edit]Notes
§  Guide to the Elements - Revised Edition, Albert Stwertka, (Oxford University Press; 1998) ISBN 0-19-508083-1
[edit]External links
http://upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png
Wikimedia Commons has media related to: Nobelium
v  d  e





No
·         Log in / create account
· Read
· Edit
Top of Form
 Search
Bottom of Form
·         Main page
·         Contents
·         Featured content
·         Current events
·         Random article
·         Donate
Interaction
·         Help
·         About Wikipedia
·         Community portal
·         Recent changes
·         Contact Wikipedia
Toolbox
Print/export
Languages
·         Afrikaans
·         العربية
·         Azərbaycanca
·         বাংলা
·         Беларуская
·         Bosanski
·         Català
·         Чӑвашла
·         Česky
·         Corsu
·         Cymraeg
·         Dansk
·         Deutsch
·         Eesti
·         Ελληνικά
·         Español
·         Esperanto
·         Euskara
·         فارسی
·         Français
·         Furlan
·         Gaelg
·         Galego
·         Hak-kâ-fa
·         Хальмг
·         한국어
·         Հայերեն
·         Hrvatski
·         Ido
·         Bahasa Indonesia
·         Italiano
·         עברית
·         Basa Jawa
·         ಕನ್ನಡ
·         Kreyòl ayisyen
·         Latina
·         Latviešu
·         Lëtzebuergesch
·         Lietuvių
·         Líguru
·         Lojban
·         Magyar
·         മലയാളം
·         मराठी
·         Bahasa Melayu
·         Nederlands
·         日本語
·         Norsk (bokmål)
·         Norsk (nynorsk)
·         Polski
·         Português
·         Română
·         Runa Simi
·         Русский
·         Саха тыла
·         Seeltersk
·         Simple English
·         Slovenčina
·         Slovenščina
·         Српски / Srpski
·         Suomi
·         Svenska
·         Tagalog
·         ไทย
·         Türkçe
·         Українська
·         اردو
·         Tiếng Việt
·         Winaray
·         Yorùbá
·         粵語
·         中文
·         This page was last modified on 22 November 2010 at 23:29.
·         Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of Use for details.
Wikipedia® is a registered trademark of the
 Wikimedia Foundation, Inc., a non-profit organization.
·         Contact us
·         Privacy policy
·         About Wikipedia
·         Disclaimers
·         Powered by MediaWiki
·         Wikimedia Foundation